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ABSTRACT.-Geographically  accurate Forest Inventory and Analysis
(FIA) data may be useful for training, classification. and accuracy
assessment of Landsat Thematic Mapper (IM) data. Minimum expec-
tation for maps derived from Landsat  data is accurate discriminaUon
of several land cover classes. Landsat  TM costs have decreased
dra.maUcally,  but acquiring cloud-free scenes at optimum seasons for
vegetation discrimination is still problematic. FIA plot locations
determined from hand-held GPS units can vary + 5-20 m. Landsat
pixels can also vary + 25 m. These spatial inaccuracies restrict the
use of pixels on feature edges and decrease the usefulness of plots
that have split conditions. Current research at the USDA Forest
Service’s, Southern Research Station involves aggregating forest
types in the lab based on field plot measurements of dominant, co-
dominant, and intermediate trees. We believe this methodology is

_ . most appropriate for tying FXA field plot .data to the satellite imagery.
We are testing methodological approaches for image processing,that -
can satisfy  the dual goals of repeatability and timeliness.

INTRODUCTION

Typically, remote sensing efforts at the South-
ern Research Station (SRS) of the USDA Forest
Service have focused on large area estimates of
forested and non-forested lands. Proportions of
forested and non-forested lands within pixels of
Advanced Very High Resolution Radiometer
Data (AVHRR) have been predicted using high
resolution Landsat  Thematic Mapper (TM) data
in a multiple regression scenario (Zhu and
Evans 1994). To date, Forest Inventory and
Analysis (FIA) managers have asked remote
sensing analysts What can you do for me? with
respect to rapid large area analysis for simplis-
UC land cover conditions. I believe that our
partners and cooperators in the Southern
Annual Forest Inventory System (SAFIS) want
more than delineation of forested from non-
forested lands and attendant acreage calcula-
tions. At a bare minimum, we should be able to
discriminate among broad land cover classes
including pine, hardwood, scrub, grass. culti-
vated, and inert. As a remote sensing analyst,
my question to FIA  is What can you do for me?
Or, how can plots taken under an annual
inventory system be used to train and validate
remotely sensed data to produce useful maps?
Remote sensing efforts that benefit FL4  should
extend well beyond Phase I estimates for
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stratification. Remote sensing also plays an
important role as a tool for providing timely
information on natural disasters and for getting
information about forest conditions in inacces-
sible areas. These applications of remote
sensing should not be overlooked for funding.

BACKGROUND

Achieving the goal of providing the land cover
classes of interest requires classification of
large amounts of TM data with FIA  field  plots
serving as the basis for classification and
verification of those classes. Acquisition of large
amounts of TM data is much less costly now
that Landsat  7 has been successfully deployed.
Full-scene (185 km x 185 km) costs have
decreased from $4,000 to $600 per scene.
However, acquiring cloud-free scenes at opU-
mum seasons for vegetation discrimination  is
still problematic. Also problematic are the
radiometric differences between adjacent
scenes. Figure 1 illustrates the radiometric
differences that exist among four full TM
scenes in the Piedmont of Georgia.

Investigation by Zhiliang Zhu (U.S. Geological
Survey, EROS Data Center, pers. comm.)
indicates that normalizing the radiometric
components of adjacent TM scenes before



Figure 1 .-Radiometric  differences for four
winter scenes in Georgia.

classification can result in up to a 50 percent
loss in reflectance characteristics  important for. . . . _-..  . _. -. _
ititotiated classifl~ation  efforts. At SRS. ciassi:
fication  is done before scenes are mosaicked
together. Although this approach maximizes
classification accuracy on a scene-by-scene
basis, it can result in a discontinuity of classifi-
cation results between adjacent images. Higher
per scene accuracy results from this methodol-
ogy. but a more visually pleasing map product
results from pre-classification scene normaliza-
tion and mosaicking. Ultimately, there is a
trade off between higher map accuracy versus
more aesthetically pleasing map products.
Managers and data users should be educated
about this aesthetic problem if maximum
information content is the desired outcome.

METHODS

Scientists at SRS are currently examining  the
usefulness of FLA plot variables for training and
for verifying Landsat  TM imagery. SAFE  inven-
tories employ Global Positioning System (GPS)
receivers to acquire geographic coordinates for
the center plot of the four-plot cluster design
(Rockwell Avionics 1996). Figure 2 illustrates
how this four-plot cluster compares to a nine-
pixel window of Landsat  TM imagery.

On the surface, the correspondence between
the FIA plot design and Landsat TM data
appears conveniently located within this nine-
pixel window. But misregistration of the imag-
ery and sources of error in the GPS measure-
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Figure 2.-Comparison of the FL4 plot design
with Landsat  734 data

i

ment require a model more like the one shown
in figure 3. Each subplot falls close to a pixel
center, but GPS &ordinates -are  accurate to f 5
m to ?r 20 m depending on averaging tech-
niques, time of acquisition, number of satellites
acquired, and overhead “line-of-sight” (Rockwell
Avionics 1996). Each TM pixel’s registration to
its ‘real-world” location is assumed to be about
+_ 1 pixel (28.5 m) in relatively flat terrain,
possibly greater in steeply dissected terrain.
Misregistration  errors can be additive tn a
worst-case scenario (20 m + 28.5 m = 48.5 m).
The reality is that the main plot falls some- .
where within a 25-pixel window. The full

1 = pixel misregistration
2 = maximum GPS misregistration

Figure 3.-Pixel and GPS misregistmfion  problems.
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cluster of four plots falls within a 7 x 7 pixel
window or greater. This translates into roughly
an 11 :ac  (4.4 ha) ground area. This inherent
*slop” in location makes training of automated
classifiers and sccuracy  assessment proce- .
dures more difficult. These spatial registration
problems will likely restrict the use of pixels on
feature edges and limit the potential usefulness
of plots that have split land cover conditions.
The possibility of deriving an edge class is
being investigated by SRS scientists. Classifica-
tion techniques being used for wall-to-wall TM
efforts in Georgia are variauons  on methods
used by Coppin and Bauer (1994) and Cooke
(1991 ) .

RECOMMENDATIONS

Work is needed to determine which plot varl-
ables are appropriate for training and verifying
TM classifications. Current efforts involve
aggregating from individual tree data for domi-
nant and co-dominant species. We believe that
the satellite View-from-above” makes these
crown classes most likely to provide useful
information for modeling land cover. Plot-level
variables like forest type are subject to field-
level interpretation. A forest type designation
calculated in the lab from the dominant and
co-dominant members of a stand is more likely
to be representative of crown reflectance in
TAM data and is easily reproducible in the lab.

Classification  Techniques
LITERATURE CITED

1 . Stratiij TM scenes by physiographic/
ecological condition.

2 . Use National Wetlands Inventory data to
mask wetlands.

3. Use Census data to mask high-density
urbanareas. .. . -

4 . Allow low-density urban’areas  to be classi-
fied.

5. Use differential highway masks.
6. Use edge detection spatial ffltering algo-

rithms to locate and eliminate some edge
pixels before classification.

7. Classi@  the data using these TM channels:
a. Raw data channels 3, 4. and 5
b. 1st Principal Component
c. Brightness and Greenness components

of the Kauth-Thomas transformation
d. Ratio of channels 3 and 4 (NDVI).

8 . Classify 75 classes using unsupervised
techniques to reduce class variance.

9. Aggregate in classes (Pine, HW, Brush,
Inert, at a minimum), then iteratively re-
class@ if necessary.

10. Aggregate classes by following methods
developed by Linda Gamett for her Master’s
Thesis.

11. Use a 5 x 5 majority scan to filter out “salt
and pepper” pixels.

12. Assess accuracy/reilne  classifications  for
areas > 25 pixels using FIA plots.

13. Assess supervised classiflcaUons  for accu-
racy with FIA plots for cross validation.
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